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CONJUGATE ADDITION OF ALLYLSILANES TO a,+ENONES. 

OBTENTION OF CYCLOBUTYL DERIVATIVES 
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Summary : By conjugate addition of allylsilanes to a,9-enones, 

cyclobutyl derivatives are formed. 

1,4-Addition reactions of organo-metallic compounds to 

a,B-unsaturated carbonyl compounds constitute one of the fundamental proces- 

ses in organic synthesis. 

Recently, it has been demonstrated that ally1 transfer reactions 

take place very smoothly from allylsilanes to a,S-enones to give G,s-enones (1) 
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In continuation of our research on new annulation techniques (2),we 

next turned to the exploitation of this reaction. Several systems were exami- 

ned: as was expected, we observed excellent to fairly good yields depending 

on the structure of enone. The sole minor product is generally the starting 

material ( with methylvinylketone, we obtain higher boiling fractions ) (3). 
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However, with acetylcyclopentene or cyclohexene, we have identified a 

minor product as the cyclobutyl derivative &f or &z . 

La 78 % &a 4 % &I 18 % 

quantitative yield 

12 75 % &B 8 % &z 17 % 

( 80 % yield, about 15 % of starting material ) 
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The structures &g and 17 were supported by the full range of spectral data (4) -- 
Possibly, the transition state for the allylic transfer has relati- 

vely high carbenium ion character and can benefit from the well known ability 

of silicon to stabilise a f3-carbenium ion (5). 

The cyclisation reaction presumably proceeds by nucleophilic attack by the 

C-2 atom of the enolate on the B-carbenium ion : 
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These structures &f and &Z correspond to 4-Exo-Trig cyclisation 

( favoured and observed course (6)) 

When R = Me, we do not observe the cyclobutyl product formation. 

As the carbenium ion approaches closely to the C-2 atom of the enolate, the 

acetyl group moves down below the initial molecular plane. This observation 

suggests a steric hindrance between acetyl and methyl groups ( R = Me ) in the 

transition state ( product development control ). 

Similarly, we do not observe cyclobutyl derivative from methylallyl- 

trimethylsilane : 
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As a demonstration of the synthetic utility of the conjugate addi- 

tion of allylsilanes and as further proof of structure, b,s-enones g + 2, and 

A2 + Li were converted to the known bicyclic ketones (2) : 

R = H or Me 
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