CONJUGATE ADDITION OF ALLYLSILANES TO α , β -ENONES.

OBTENTION OF CYCLOBUTYL DERIVATIVES

Roselyne PARDO, Jean-Pierre ZAHRA and Maurice SANTELLI*

Centre de St-Jérome, Rue H. Poincaré, 13397 MARSEILLE Cedex 4, France

Summary : By conjugate addition of allylsilanes to α,β-enones, cyclobutyl derivatives are formed.

l,4-Addition reactions of organo-metallic compounds to α,β -unsaturated carbonyl compounds constitute one of the fundamental processes in organic synthesis.

Recently, it has been demonstrated that allyl transfer reactions take place very smoothly from allylsilanes to α,β -enones to give δ,ϵ -enones (1).

In continuation of our research on new annulation techniques (2),we next turned to the exploitation of this reaction. Several systems were examined; as was expected, we observed excellent to fairly good yields depending on the structure of enone. The sole minor product is generally the starting material (with methylvinylketone, we obtain higher boiling fractions)(3).

40 % yield (+ higher boiling fraction (1))

quantitative yield (1)

50 % yield (1) (45 % starting material recovery)

quantitative yield.

However, with acetylcyclopentene or cyclohexene, we have identified a minor product as the cyclobutyl derivative $\underline{14}$ or $\underline{17}$.

(80 % yield, about 15 % of starting material)

The structures $\underline{14}$ and $\underline{17}$ were supported by the full range of spectral data (4) Possibly, the transition state for the allylic transfer has relati-

vely high carbonium ion character and can benefit from the well known ability of silicon to stabilise a β -carbonium ion (5).

The cyclisation reaction presumably proceeds by nucleophilic attack by the C-2 atom of the enolate on the β -carbenium ion :

These structures $\underline{14}$ and $\underline{17}$ correspond to 4-Exo-Trig cyclisation (favoured and observed course (6))

When R = Me, we do not observe the cyclobutyl product formation. As the carbenium ion approaches closely to the C-2 atom of the enolate, the acetyl group moves down below the initial molecular plane. This observation suggests a steric hindrance between acetyl and methyl groups (R = Me) in the transition state (product development control).

Similarly, we do not observe cyclobutyl derivative from methylallyl-trimethylsilane :

As a demonstration of the synthetic utility of the conjugate addition of allylsilanes and as further proof of structure, δ, ε -enones $\underline{6} + \underline{7}$, and $\underline{12} + \underline{13}$ were converted to the known bicyclic ketones (2) :

References and notes :

- (1) (a) A. HOSOMI and H. SAKURAI, J. Amer. Chem. Soc., <u>99</u>, 1673 (1977)
 (b) T. YANAMI, M. MIYASHITA and A. YOSHIKOSHI, J. Chem. Soc., Chem. Comm. 525 (1979).
- (2) Z. BOUNKHALA, S. HACINI, R. PARDO and M. SANTELLI, ibid., 263 (1979).
- (3) In a typical experiment, to a solution of TiCl_4 (10 mmol) in dry CH_2Cl_2 (10 ml) cooled at -20 °C, was added the α,β -enone (10 mmol) in dry CH_2Cl_2 (5 ml). After stirring 5 min, the mixture was cooling to -78 °C and allyltrimethylsilane (15 mmol) in dry CH_2Cl_2 (15 ml) was added. The mixture was kept at -78 °C for 5 h and at -30 °C for 5 h and was then hydrolysed.
- (4) ¹³C nmr data (FT 80) (assignments confirmed by off-resonance decoupling):

(5) C. EABORN, J. Chem. Soc., Chem. Comm., 1255 (1972).
E. EHLINGER and P. MAGNUS, ibid., 421 (1979) and ref. therein.
(6) J.E. BALDWIN, ibid., 734 (1976).

(Received in France 50 July 1979)

183

73

111